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Continuous Adjoint Sensitivities for Optimization
with General Cost Functionals on Unstructured Meshes

Oktay Baysal* and Kaveh Ghayour
Old Dominion University, Norfolk, Virginia 23529-0236

A continuous adjoint approach is developed to obtain the sensitivity derivatives for the Euler equations. The
complete derivation of the costate equations and their transversality (boundary) conditions are presented. Both the
state and the costate equations are second-order finite volume discretized for unstructured meshes, and they are
coupled with a constrained optimization algorithm. Also integrated into the overall methodology are a geometry
parameterization method for the shape optimization, and a dynamic unstructured mesh method for the shape
evolution and the consequent volume mesh adaptations. For the proof of concept, three transonic airfoil optimiza-
tion problems are presented. This method accepts general cost functionals, which are not necessarily functions of
pressure only. It is also shown that a switch to the natural coordinate system in conjunction with the reduction of
the governing state equation to the control surface results in sensitivity integrals that are only a function of the
tangential derivatives of the state variables. This approach eliminates the need for normal derivative computations

that can be erroneous.

Introduction

EARLY a decade ago, a symposium on multidisciplinary ap-

plications of computational fluid dynamics' included a few
papers on the utilization of computational fluid dynamics (CFD)
in a design environment. Since then, there has been an increase in
the interest on this topic for a clearly justified reason: CFD can be
useful beyond just simulating and analyzing a fluid flow and can be
utilized for design optimization, to reduce the cycle time for a new
product. This, however, may be prohibitive for the needed compu-
tational and human resources if, as often is the case, a large matrix
of candidate designs or design variables are involved. Therefore,
motivated by the need for approaches beyond cut and try, forums
on CFD for design and optimization® and design optimization us-
ing CFD?® were organized. A cursory glance at Refs. 2 and 3 and
other emerging publications on CFD for design should attest to the
successes accomplished on the topics that include gradient-based
numerical optimization methods, stochasticand genetic algorithms,
shape optimization, direct and inverse methods, tradeoff identifica-
tion studies, mutipoint designs, artificial-intelligence-basd meth-
ods, pre- and postoptimizationsensitivity analyses,adjoint methods,
and discrete and continuous sensitivity methods. The present paper
will report on this last topic.

Direct numerical optimization methods are systematic method-
ologies, which extremize a chosen objective. They either create or
merely improve a design, depending on if the global or just a local
minimumhas beenfound. However, they can be rather computingin-
tensive,even when discrete analytical sensitivitiesare used. It is this
very issue that motivated the presentinvestigation. The remedy was
previously explored at the numerical algorithm level*3; however,
the remedy was sought at the level of the differential equations that
eventually produce the directions for the search methods of the opti-
mization process. To be more specific, first, the typical components
of asimulation-basedand automated design method with constraints
will beitemized. These are 1) problem formulation, thatis, the objec-
tive and the constraint functions; 2) gradient-basedand constrained
optimizationalgorithm; 3) flowfield simulation and analysis, that s,
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CFD; 4) gradients of the objective and the constraints with respect
to the design variables, thatis, the sensitivity coefficients; 5) param-
eterization of shapes as they evolve; 6) regeneration of surface and
volume grids; 7) grid sensitivities;and 8) gradients of the optimized
shape with respect to the design variables, that is, the sensitivity
derivatives used for tradeoff studies and off-design conditions.

The presentpaper will address an alternativemethod for the items
4)and 8), thatis, to generate the pre- and postoptimizationgradients.
It is different from the previously published methods, which are in-
valuable for their respective objectives. For example, unlike Refs. 6
and 7, the present method uses unstructured meshes; unlike Refs. 8
and 9, it takes the continuous approach; and unlike Ref. 10, it ac-
cepts general cost functionals and formulates the problem in a way
to produce accurate derivatives on the design surface.

Sensitivity Analysis Methods

The accuracy of a gradient-based optimization method, and the
efficiency with which it can accomplish this accuracy, are directly
related to the accurate and efficient receipt of the gradient informa-
tion on the objectives and the constraints. The sensitivity analysis
provides 1) the gradients for optimization and tradeoff studies, 2)
the postoptimization gradients for off-design conditions, and 3) a
first-orderbutinexpensiveapproximationto neighboring-pointanal-
ysis via Taylor series expansion.!! The gradient evaluation may be
performed by the following approaches.?

Finite Difference Method

AsshowninRef. 11, thisis abrute-forceapproach,whichis highly
prone to inaccuracies and inefficiencies. The computational cost of
each optimizationcycle scales with number of design variables plus
1 flowfield analyses. Because it is the easiest to formulate, it has
been used herein to compare and validate the sensitivities obtained
by the present continuous adjoint method.

Analytical Gradient Evaluation Methods

The governing equations of fluid flow can be differentiated ana-
lytically either starting with their original differential form then us-
ing the variational concepts (continuous sensitivities) or after they
have been discretized (discrete sensitivities). 1) Discrete sensitivity
analysis (also known as quasi analytical) is performed by differenti-
ating already CFD-discretized equations with respect to the design
variables. It corresponds to a discrete solution of the continuous
sensitivity function, and they are exact. Both hand differentiation'!
and automatic differentiation'® can be used to generate the sensitiv-
ity equations. 2) In a continuous adjoint formulation (also known as
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controltheory), the adjoint (or costate) equations and theirboundary
conditions are derived by the use of variational methods. Because
these equationsare of the same order and character as the flow equa-
tions, they can be discretizedand solved for their Lagrange variables
A by the same CFD scheme used for the flow (or state) equations.
Hence, its computer storage requirement is no more than what the
flow analysisrequires. Nonetheless, its analytical development may
be case dependentand sometimes cumbersome. A proof-of-concept
case for this formulation, for example, is givenin Ref. 14 as applied
to the quasi-one-dimensiond Euler equations and in Ref. 15 for the
two-dimensional Euler equations. The present formulation signifi-
cantly improves, extends, and generalizes these methods.

Continuous Adjoint Sensitivities

Variational design optimization blends the principles of optimal
control theory and the variational methods. The optimal control
theory states the conditions under which the control variables, pa-
rameters, and functions, or their combinations, can be continuously
altered so that the system is dictated to meet the desired criteria.
The state equations considered in the present method are the Euler
equations of fluid flow in conservation form:

PR g
where
Q=I[p pu pv pE]" )
F=|pu pu>+P puv puH|’ 3)
G=|pv puv pv*+P pvH|T @)

Suitable boundary conditions are applied along the whole or part
of the boundary I' =I'g + I', of the domain in Fig. 1. The cost
function is a general function of pressure, density, and tangential
velocity defined on the body surface as

1.(Q, Xp) =/ f(p,p,us, Xp)ds ®)
Ly
where ug and ds are the tangential velocity and the differential arc
length, respectively. The augmented cost functional is defined as
I=1+1, 6)

where
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Equation(7)is the volume integral to enforce the conservationequa-
tions and the wall boundary condition as constraints of the problem,
where ¢ denotes the fluid velocity. The following lemma for the ma-
terial derivative'® is used to find the first-order variation of volume
and surface integrals in Egs. (5) and (7).

Lemma: Let v, v, w3 be functionals defined as

¥, =/f(x)ds
c

¥y =/ f(g-1ldx| ®)
c

Y = / 8(x)de,
Q

where the volume 2andits boundingsurface I deformunder the ac-
tion of a prescribed design velocity field V. The material derivatives
are given, respectively, as

I'g

Fig. 1 Domain Q with design surface I's
and outer boundary I, and their normals.

N
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In Egs. (9) and (10), f' is the local change in f, and f is the
substantial (or total change) in f as the boundary is deformed. Here
f and 71 are the tangential and normal unit vectors, respectively,x 4
and x are the endpointsof the curve C, and for a closed contour, the
last term on the right-hand side of Eqs. (10) and (11) is identically
Z€ro.

This lemma is used to obtain the first-order variation of Eq. (6)
with respect to the boundary:

. , ., of . (V-ﬁ)_ oV -n)
I_'/FA§<f+an(V n+ f R Sustn 3s )ds

+HIfV-DEL - / QT (AT - X, + BT -)))dQ
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+[V-V(pg)]-n}ds (12)

where the partial differentiationoperator has been transferred to the
Lagrange multipliers by the Gauss theorem. Expanding the last two
terms, one can get

I =/FS (fpp’ + fop' + fiul + (Zjnc + £>(V-ﬁ)>ds

‘/ QT (AT A, + BT-2,)d0+ f (n,F' +n,G) - Ads
Q o
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N Ly

+ / V{E +pg-i +[V-V(pg)]-a}ds (13a)
Is

where
E =n.(pu) + n,(pv) (13b)

Because for the present problems it is assumed that the flow is
steady, inviscid, and adiabatic, the flow is also isentropic along its
streamlines, but with different constants before and after the shock.
Therefore, density or temperature variations can be easily written
in terms of the pressure variation:

P =(yplp)p (14)

Furthermore, pressure and tangential velocity are related through
the momentum equation in the s direction as follows:

p ou, _ )

+ puS = / !
s s = p' = —puu (15)
p = pls(t, Xp)]

To extremize the augmented cost functional, its first variation
is set to zero. The volume integral in Eq. (13a) is eliminated by
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requiring that the Lagrange variables satisfy the following adjoint
equation:

AT X, + B"-A, =0, Y € Q (16)

Some of the terms involving the variations of the flow quantities
with respect to the boundary can be eliminated by simply setting
the following relation to zero:

v+ (A +udy +vis+ HA) =0 17)

The surface integrals provide the boundary conditions and the
corresponding sensitivity equation (functional derivative). The wall
and the far-field boundary conditions are given, respectively, as
follows:

noo +n,s ¥ fo + (plyp)fo— ful pug =0 (18)
/ Q7-A"A=0 (19)
To

InEgs. (18) and (19),A =n.A + n,B is the Jacobian matrix associ-
ated with the direction of propagationn. On using the transforma-
tions

w=71"¢0 (20)
O=T7"-) 21
where T is defined by the similarity transformation
A=T-A-T™! (22)
A =diag(v,, vy, v, + ¢, v, —C) (23)

the far-field boundary condition reduces to
/ WK @ds =0 24)
To

If the conditions at the far field are kept constant, the character-
istic variable W/ corresponding to the ith eigenvalue will be zero
for negative eigenvalues.If ©; corresponding to the ith positive
eigenvalue of A is denoted by ®;", the far-field boundary condition
will be satisfied if ® = 0. A logic is built in to check the local
Mach number and the flow direction with respect to the domain as
summarized in Table 1.

Hence, the first-variationof the augmented functionalcan be com-
puted from the following equation:

i= _/ T{pg-i +[V-V(pg)] - i}ds
Is

of f .
+ /FS (an + R)(V-n)ds 25)

where
O=2x +uly +vi; + H) (26)

In Eq. (25), the gradient of pg on the control surface needs to
be computed accurately. The cell-centeredcontrol volume on linear
triangles represents the curved airfoil surface with piecewise linear
segments. The well-knownBabuska paradox (see Ref. 17) states that
when linear segmentsare used to approximatea curvedboundary the
directional derivatives with components along the normal direction

Table 1 Physical and numerical boundary conditions at the far field

Outlet/inlet Physical conditions Numerical conditions
Subsonic outlet 0, 6,, 65 04
Supersonic outlet 01, 06,, 05, 04 None
Subsonic inlet 2 0,6, 06,
Supersonic inlet None 0, 6,065,064

will almost always converge to the wrong answer. In the following,
it will be shown that a switch to body-fitted coordinates s-n, in
conjunctionwith the reduction of the governingstate equationto the
controlsurface,resultsin sensitivityintegralsthatare only a function
of the tangential derivatives of the state variables. These tangential
derivativescan be computed very accurately with cubic spline fitting
of the available information on the surface, and furthermore, this
approach eliminates the need for normal derivative computations
that can be erroneous.

However, certain control surface parameterizationsresult in uni-
directionaldesign velocity fields and any proposed formulation must
be able to take the utmost advantage of this simplifying condition.
As such, two slightly different approachescan be used: 1) full trans-
formation to the s-n plane and 2) coexistence of the Cartesian and
s-n coordinate systems in the formulation. In the first approach,
one can show by straightforward algebraic manipulations that for a
two-dimensional curve in the s-n coordinates

ﬁ=<a(v'ﬁ)_v'f>f=9’f 27)
oS R

where 0 is the abgle between the tangent and the positive x axis.
Also, the convective derivative term of Eq. (25) can be written as

k) s R 0 R
[V-V(pg)]- = (— 5 (oun) + ”;)(V-t) o (pu)(V-i)
(28)

The normal derivative term in Eq. (28) can be eliminated by using
the continuity equation in the s-n coordinate system:

ity

R = 0 (29)

a( )+a( )
U u -
asp“ anPn

Furthermore, for a solid wall with no suction or blowing, Eq. (28)
can be further simplified as

P”xf

[V-V(pp]-2=V- ( R + aas (pux)ﬁ> (30)

Substituting Eqs. (27) and (29) back into Eq. (25) yields

. ;L Pug . 0 .
I =— I pu,6" + V- + _ (puy)(V-n)|ds
r's R os

of _ f .
+ /rs (an - R)(V-n)ds (31)

In the second approach, the convective derivative term of Eq. (25)
takes the following form in Cartesian coordinates:

[V-Vipg]-i =V-[n.V(pu) +n,V(pv)] (32)

The Cartesian components of Eq. (32) can be found very easily by
applying a rotation of axis to the results of Eq. (30):

o(puy
Kpu,cosO — sinO (pity)
s

o(puy
Kpu, sin@ + cos 0 (pity)

n,Vipu) +n,V(pv) = (33)

N

Therefore, the final form of the sensitivities for the second approach
is

I =—/ IT
' o(pus A
Ts + (K‘pux sin0 + cos 0 (gu‘ )>(V -1
s

of  f .
+ /FS (an + R)(V-n)ds (34)

N

0 s A
pus0 + (Kpux cos6 —sin 0 (gu‘ )>(V- i)J
ds
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As is apparent from Egs. (31) and (34), the normal derivatives of
flow quantities to the control surface only appear implicitly in the
normal derivative of the cost functional. Accurate computation of
these derivatives is discussed subsequently.

The method of approach here is first to write the Euler equa-
tions (1) in s-n coordinates and then to recast them in a way that
relates normal derivatives of flow variables to expressionsinvolving
only the tangential derivatives. Therefore, the governing equations
(1) in the s-n coordinates are

S+ pun =" =0 G9)
P (147 ) T P g ag)
Zi - Rpfn T fL:/R aaL;n Pt aaLZ =0 6D
aas (pus H) + aan I:lpznllj =0 38

Also, note that on the surface, where n = 0, the normal component
of velocity u,, vanishes. The normal derivative of pressure can be
found directly from the normal momentum equation as

2

o _ pu (39)

on R

Normal derivatives of density and tangential velocity are more

involved. The energy equationon the airfoil surfacecan be simplified

to show that the total enthalpy is constant throughout the flowfield
before and after the shock:

H=C,,T+uf| 2 =const (40)

Equation (40) cannotbe differentiated with respect to n because it is
valid only at n = 0. However, if u2/2 is replaced by (u> + u>)/2 in
Eq. (40), then it can be differentiated with respect to n, and, thereby,
to provide the following relationshipbetween the normal derivatives
of density, pressure, and tangential velocity on the airfoil surface:

op _ ¥y op | puy ou,

= + -1 41
on  a’on a? (v ) on (“41)
If the tangential momentum equation is differentiated with respect
to n and the normal derivatives of pressure and density are substi-
tuted from Egs. (39) and (41), respectively, the following first-order
differential equation is obtained:

0 [ ouy oug Uy oug 1 op
+ -0 -

os \ on on a? 0s p Os
_ 0 [ ug y uf ouy @2)
T s\ R a’> R os

The source term and the coefficient of the normal derivative of u;
are known functions of s from the CFD analysis. Hence, this equa-
tion can be solved for the normal derivative of u, with a periodic
boundary condition. Consequently, the normal derivative of density
can be found by substituting for the normal derivatives of pressure
and tangential velocity in Eq. (41).

Sensitivities with Surface Parameterization

A nonparametric geometry definition requires the surface mesh
coordinates. Although this approach utilizes the readily available
data, it increases the number of design variables. However, a para-
metric geometry definition reduces the number of design variables
because the number of control points is significantly less than the
surface mesh points. They do require some understandingin making
the choice of parameterizationtechnique, as well as extra computa-
tions and storage. In the present approach, an mth-degree Bezier-
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Fig.2b Unstructured mesh for the target airfoil design.

Bernsteinrepresentation(Fig. 2a) is obtained using a parametert as
follows:

R(t) = Z B (1)P; ,

t€10,1] (43)
i=0
where
P =(X; Y, Rt =(x y) (44)
Bl.m(t) — ti(l _t)m—i — ! 'ti(l _t)m—i (45)

il(m — i)

The variation of a point on a design surface requires the perturba-
tions of the control points, which are related to the surface mesh
coordinates by

m m X,
V=) B'OP, =Y B v (46)
i=0 i=0 i
If the unit normal is given by
T
n y — (47)
VA9 R+ g2
then the design derivative of the unit normal can be written as
PO &
=0f = 4
" X2+ y2 (48)
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Finally, the sensitivity equation, that is, the variation of the cost
functional with respect to the ordinates of the Bezier control points,
is obtained by incorporating Eqs. (43-48) into Eq. (34):

ol ! dB™
=— | 1o, ' d
0y, o dt
1

By’ Xy—xy oL L 0(puy)
- In s V(Q2% + Q3y) + X dr
0 \/xz + 32 \(A2 + y2)2 os

1 . .
; P
+ / (afBl."'\/x2 +y2— 0 XyBlf">dt (49)
0

n X2+ y?

Solving State and Costate Equations

The state equation (1) is first expressed in the integral form for a
bounded domain Q with a boundary T" (Fig. 1):

2
/QdQ+/(nXA.T+nyB.T)-QdF=O (50)
ot Q r ' l

Second-orderspatial discretizationfor the presentupwind schemeis
accomplishedby using Roe’s flux-differencesplitting. Cell-centered
solutions are Taylor-seriesexpanded to each of the faces of each tri-
angular cell in the domain (Fig. 2b). The spatially discretized form
of the governing equations are then integrated in pseudotime using
the explicit four-stage Runge-Kutta method. On the wall, the stan-
dard inviscid boundary conditions I'g for the velocity and the pres-
sure are implemented: impermeable, velocity parallel to the wall,
and zero pressure gradient. In the farfield, characteristic boundary
conditions I'p are employed based on the locally one-dimensional
Riemann invariants.

For the adaptation of the mesh to the boundary changes as the
shape evolves, the tension-springsanalogy is used, that is, each edge
of atriangleis represented by a tension spring. By assuming that the
spring stiffnessis inversely proportionalto the edge length, the equi-
librium of the composite spring forces provides the displacementof
each node. To restrict the size of the adaptation region, a window
is created around a boundary being reshaped. The entire domain is
searched to locate the window nodes and the window frame nodes.
Then, the window nodes are allowed to be adapted, but the nodes
exterior to the window and the window frame nodes are spatially
fixed. Detailed discussions of the solution algorithm may be found
in Refs. 18 and 19.

The adjoint equations (16) are of the same order and character
as the flow (state) equations (1). Hence, they are discretized and
solved for the Lagrange variable vector A by the same CFD scheme
used for the flow equations. However, to facilitate this pseudotime
marching scheme, a pseudotime term is added:

oA

ot

then expressed in the integral form for a bounded domain €2 and its
boundary I' (Fig. 1):

AQ;

At

—A"™ X\, —=B"X, =0 (5D

()\l’.’“ - )\:’) - / (nXAl.T + nyBl.T) -Ads =0 (52)
r

The Jacobiansin Eq. (52) are calculated at the cell centers and they
are taken outside the integral sign. If the Jacobian matrix associated
with direction n is denoted by

”XAI‘T +n, BiT = A(Qi; ) (53)
then the spatial term in Eq. (52) can be rewritten as
/ (AT +n,BT) - Xds = Y _ Gyl (54)
r JEN;

In Eq. (54), [;; is the side of cell i lying between the cell i and the
neighboringcell j, and G;; fora cell-centeredscheme can be written
as

Gy = [AQi: (N + X)) +AIT(A, = X)) (59)

where IAI is the Jacobian matrix evaluated at the Roe state and the
left and right values are the cell quantities extended to the sides by
the Taylor series expansion around the cell center.

Optimization

The gradient-based and constrained optimization method of
Kreisselmeier-Steinhauser (KS)?° as coded in KSOPT?! is used.
This method converts all of the equality constraints into a set of in-
equality constraints; then it combines the objective function and all
of the inequality constraintsinto one composite KS function. That
is, the constrained problemis converted to an unconstrainedone us-
ing the KS function rather than the traditional penalty method. The
gradient of the composite KS function is then generated using the
analytical sensitivities from Eq. (49). At this point a sequential un-
constrained minimization technique is used. The particular choice
herein is the Davidson-Fletcher-Powell search algorithm for the
univariate search direction and the optimum step size. The stopping
criterion is selected to be the relative change of the composite KS
function to be less than a prescribed amount in three consecutiveit-
erations. Although not used herein, this method can handle multiple
objective functions.

Demonstration of Methodology

The analytically computed sensitivities are compared with the
benchmark of finite differenced derivatives. Because the discretiza-
tion error of the continuous formulation does not correspond to
that of the state equations, only in the limit when the mesh size
approaches zero, the continuous sensitivities are expected to ap-
proach asymptotically the finite differenced derivatives. In Fig. 3,
it is demonstrated that the continuous adjoint sensitivities compare
well with the finite difference derivatives for the fairly fine mesh
employed herein.

This new continuousadjoint formulation, which is coupled with a
CFD solver, optimizer, surface parameterizer, and mesh movement
module, will now be demonstrated. Three cases are considered,
where the shape of an airfoil is optimized for different objective
functions f as assigned to the cost function [Eq. (5)]. In all three
cases, the Bezier controlpointsp; of Eq. (44) are treated as the design
variables, and side constraints are assigned to the y coordinate of
each one of the knots ¥; of Eq. (49). Also, geometric constraintscan
be applied to control, for example, the trailing edge included angle,
maximum thickness, thickness at midchord, or included area.

Each optimization cycle starts with a symmetric NACA 0012
profile (Fig. 2a) as the initial design. A steady-state solution is ob-
tained for the airfoil at 2-deg angle of attack in Mach 0.75 flow.
For the sake of driving the optimization, the target aerodynamics is
obtained from the solution of the flow at the same conditions but for
an Royal Aircraft Establishment profile. This target profile and its

TT T T T 1T T

TITT

———— Finite Difference(Upper Surface)
—-—a—-— Adjoint{Upper Surface)
———o—— Finite Difference{Lower Surface)
—-—o—-— Adjoint(Lower Surface)

TCT T T T T rfrrrrrrrr

o by by by b
2 4 6 8 10

Bezier Control Points

Fig.3 Computed continuous adjoint sensitivities vs benchmark finite
difference (brute force) derivatives.
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unstructured mesh is shown in Fig. 2b. The mesh has 14,590 cells
(7480 nodes) and there are 370 nodes on the airfoil, which is the de-
sign surface. The airfoil is Bezier-Bernstein parameterized with 24
Bezier control points, of which 22 are used as the design variables
(Fig. 2a).

Case 1 is the minimization of the departure from the target pres-
sure distribution as denoted by p’:

f=3p-p) (56)

This is a typical case performed by others, for example, in Ref. 10.
Presentedin Figs. 4a-4c are the surface pressuredistributions,shape
evolution, and the variation of the cost functional for case 1. Each
Figures 4a-4c include respective plots for the initial and target pro-
files and those that correspond to two intermediate and the final
designs. The maximum deviation between the target and the final
profile is less than 1.75%, which is very satisfactory.Point by point
recovery of the target profile is not expected because continuous ad-
joint sensitivitiesagree with brute-forcederivativesonly in the limit
of an infinitely fine mesh (Fig. 3). Although the results are very
close to the target after 30 flow analysesand 5 gradient evaluations,
with the shock locations coincident, the residual of the cost func-
tional does not meet the stopping criterion. It is only after another
45 analysesand 5 gradientevaluations that the optimization process
terminates.

Case 2 is selected to demonstrate that the present formulation is
general and thatthe costfunctionaldoes nothave toinclude pressure.
In Ref. 22, it is noted that such a generalized cost functional is
necessary and possible. The objective now is the minimization of
the departure from the target density distribution as denoted by p’:

f=3p-p) (57)
Presented in Figs. Sa-5c are the surface density distributions,shape
evolution, and the variation of the cost functional for case 2. Fig-
ures Sa-5c include respective plot for the initial and target profiles
and those that correspond to one intermediate and the final designs.
The final design and its pressure distribution are again virtually
identical to the target. However, the slow convergence to the so-
lution when the search is near the solution, as observed in case 1,
repeats itself.

Finally, case 3 is considered to demonstrate a composite cost
functional thatincludes an aerodynamicconstraintthrougha penalty
coefficient. The drag is added to the cost functional of case 1 after
multiplying it by the coefficient A, which is assigned an arbitrary
value of 0.1:

f=13p—-p)ds+AC, (58)

Presented in Figs. 6a-6¢ are the surface pressure distributions,
shape evolution, and the history of the lift and drag for case 3. Fig-
ures 6a-6¢ include respective plot for the initial and target profiles
and those that correspond to three intermediate and the final de-
signs. Because this case is not only a minimization of a departure
from the target but also a drag minimization, the final shape is not
known a priori, that is, blind optimization. Instead, the profile that
supports the target pressure distribution [the first term in Eq. (58)]
is overlaid on Figs. 6a-6c¢. The final design has the upper surface
shock at about the same location as the target shape because the
optimization process is trying to match the prescribed target pres-
sure distribution, and at the same time it is also trying to reduce
the shock strength, which is responsible for the inviscid pressure
drag. For the optimized profile, the ratio of the pressure coefficient
downstream of the shock to the corresponding value upstream of
the shock is approximately equal to 1.45, whereas the same ratio
for the prescribed pressure profile is about 2.15. This explains the
reductionin inviscid drag coefficient from 0.0170 for the prescribed
pressure distribution to about 0.0095 for the optimized profile.

All of these demonstrations are produced on a small desktop
computer. This is possible because generating the continuous sen-
sitivities requires no additional memory beyond that for the flow
analysis (for the present cases, it is 65 MB). Unlike solving for the
discrete sensitivities?>>* here there is no need to form any large
matrices. To avoid such large matrices, an approximate factoriza-
tion was used for the discrete adjointequationsin Ref. 5, butat some
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expense of the convergencerates. In the present continuous adjoint
method, the average computational time needed for one design cy-
cle is about 1.8 times that for one flow analysis. A final comparison
pointis the amount of work needed to produce the code that gener-
ates the sensitivities. Once the formulation is well understood, the
present hand differentiation is roughly the same amount of labor
as it is for hand differentiation to obtain the discrete sensitivities.
Automatic differentiationfor the discrete sensitivities(e.g., Ref. 13)
would be less laborious. However, current automatic differentiation
algorithms produce some unnecessary terms along with those that
generate the gradients, which leads to further degradation of the
computing times.

Conclusions

An adjointapproachis developed to obtain the continuous sensi-
tivity derivatives of the Euler equations and general cost function-
als. Both the state and the costate equations are second-order finite
volume discretized for unstructured meshes, and they are coupled
with a constrained optimization algorithm. Also integrated into the
overall methodology are a geometry parameterization method for
the shape optimization and a dynamic unstructured mesh method
for the shape evolution and the consequent volume mesh adapta-
tions. For the proof of concept, three airfoil optimization problems
in transonic flow are presented. These results should establish 1) the
generality of the method in accepting cost functions, 2) the accu-
racy of the obtained sensitivity derivatives,and 3) the efficiency with
which the optimized shapes are obtained on a small desktop com-
puter. Consequently, the method is suitable and is being extended
for the unsteady flows and aeroacoustics.
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